

Zachary Lee Skidmore

Senior Bioinformatician & Data Scientist

Data Science | Machine Learning | Oncology R & D | Pipeline/Workflow Development | Data Visualization | Bioinformatics | Statistics

St. Louis, MO | [ORCID](#) | [GitHub](#) | <https://zlskidmore.github.io>

Professional Summary:

Senior bioinformatics and quantitative scientist with 12+ years spanning Tier 1 academic research and industry. Proven applied experience across data science, machine learning, statistical inference, and pipeline/software development within bioinformatics and oncology. Author of 50+ high-impact publications and patent co-inventor. Mentor and instructor, developed and taught multiple bioinformatics courses. Seeking a senior role to apply deep technical expertise and background.

Skill Summary (See Page 2 for a complete list):

Education: University of Illinois - Chicago; Master of Engineering in Bioinformatics

May 2013

Work Experience:

Delfi Diagnostics

Remote

Position: Senior Quantitative Scientist, Translational Science, Data Science - Research

Aug 2022 - Oct 2025

2023 - 2025 Highlights

- *Co-inventor for provisional patent to differentiate histological subtypes of lung cancer using high-dimensional cfDNA features ([WO2024173277A2](#))*
- *Increased sensitivity of nucleosome depletion features via generalized additive models, improving feature performance*
- *Built and validated dimensionality reduction workflows (PCA) and projected incoming data on learned space for sample subtyping*
- *Applied unsupervised learning approaches and hierarchical clustering to identify and prioritize candidate biomarkers off of NDR features.*
- *Lead author and bioinformatic lead for development and application of ctDNA monitoring on a prospective phase III clinical trial (CAIRO5) using fragmentomics including survival analysis and hypothesis testing PMID: [39433569](#)*
- *Maintained and iteratively improved a production level random forest model to predict ctDNA fraction from plasma*
- *Designed probabilistic binomial models to quantify the impact of sequencing coverage and ploidy on feature*
- *Engaged with drug development companies in the application and analysis of ctDNA monitoring across multiple cancer types*
- *Developed and cross-validated machine learning models using engineered features*
- *Delivered and presented interpretable analytical results to external collaborators and cross-functional stakeholders, supporting multi-million-dollar partnerships*
- *Executed 15+ end-to-end applied data science and translational research projects, from inception through publication, resulting in multiple domestic and international conference presentations and manuscripts*

McDonnell Genome Institute, Washington University Department of Medicine

St. Louis, MO

Position: Senior Staff Scientist - Griffith Lab

Nov 2013 - Aug 2022

2013 - 2022 Highlights

- *Lead author and analyst for a study of non-cirrhotic hepatocellular carcinoma (WGS/WES/Custom Capture) PMID: [35568002](#)*
- *Developed a protocol for scTCRseq and scRNAseq applied to canine samples PMID: [38649520](#)*
- *Implemented modifications to existing *H. sapiens* workflows to be compatible with multiple species PMID: [33556121](#)*
- *Built a custom workflow to detect viral integration sites from dual indexed viral reads PMID: [34019588](#)*
- *Designed, cross-validated, and implemented a machine learning model to classify and refine somatic variant calls using XGB models*
- *Refactored the RegTools analysis software package to be faster and less memory intensive obtaining a 20x boost in performance*
- *Developed custom Common Workflow Language (CWL) bioinformatic pipelines for institute wide use: [bioinformatic_analysis-workflows](#)*
- *Created and maintained Docker images for bioinformatic analysis: <https://hub.docker.com/u/zlskidmore>*
- *Trained and mentored staff scientists, postdocs, and graduate students in various bioinformatic and technical skill sets*
- *Created static websites and subsequent material for [genomic visualization](#), [precision medicine](#), and [RNAseq](#) for training purposes*
- *Performed analysis on TCR clonotype repertoire, HLA prediction, neoantigen prediction, ctDNA, WGS, WES, RNAseq PMIDs: [31390566](#), [31618044](#), [31467059](#), [31685621](#), [31902496](#), [32665297](#), [34036230](#), [33556121](#), [33547198](#)*
- *Prototyped shiny application for interrogation of saturation mutagenesis assays: [saturation-mutagenesis-viz](#)*
- *Led development and publication of Genomic Visualization in R (GenVisR) library on bioconductor PMIDs: [27288499](#), [34506690](#)*
- *Consulted on design and implementation of Clinical Interpretations of Variants in Cancer (CIViC) database; Co-organized first Biohackathon for CIViC at the Netherlands Cancer Institute; Submitted and curated database entries PMID: [28138153](#)*
- *Assisted in the maintenance and improvement of institute project management and analysis software PMID: [26645048](#)*
- *Conducted statistical and bioinformatic analysis for next generation sequencing data (Benchmarking Alignment, Clonotype Expansion, Cancer Genomic Alterations, etc.): PMIDs [26531824](#), [26563128](#), [27058228](#), [27029710](#), [27181063](#), [27681435](#)*
- *Performed next generation sequencing analysis and presented results for cancer genomic tumor board n-of-1 cases*

Workshops, Instruction & Community Leadership:

- *Teaching assistant/content author for [Cancer Research Institute bioinformatics workshop](#)*
- *Instructor/contributing author for genomic visualizations workshop (<https://genviz.org>)*
 - *[Physalia-courses](#), Freie Universität Berlin, Germany*
 - *[Evomics - Workshop on Genomics 2019](#), Český Krumlov, Czech Republic*
- *Teaching assistant/contributing author for Precision Medicine workshop (<https://pmbio.org>)*
 - *[PR Informatics](#), Glasgow, Scotland*
- *Contributing author for RNAseq workshop (<https://rnabio.org>)*

2024, 2025

2017, 2019

2019, 2020

2018

Selection of Scientific Expertise

Advanced (*):** Extensive multi-year experience with deep understanding. Have mentored, taught, or critically evaluated the topic.

Proficient ():** Multi-year practical experience. Demonstrated use in published research or public repositories.

Familiar (*): Working knowledge through guided exposure or light use.

cfDNA Fragmentomics & Liquid Biopsy Data Analysis	Statistical Analysis
<ul style="list-style-type: none"> • <i>shallow-WGS Fragmentomic Profiling</i>*** • <i>shallow-WGS Aneuploidy Detection</i>*** • <i>Nucleosome Footprinting</i>*** • <i>Early Cancer Detection and Modeling</i>** 	<ul style="list-style-type: none"> • <i>Hypothesis Testing (Parametric/Non-Parametric)</i>*** • <i>Survival Analysis (Kaplan-Meier)</i>*** • <i>Batch Effect Detection/Correction</i>** • <i>Power Analysis</i>** • <i>Distribution-based Modeling (e.g., binomial, negative binomial, poisson)</i>**
Next-Generation Sequencing Analysis	Cancer Immunotherapy Data Analysis
<ul style="list-style-type: none"> • <i>Pre/Post Alignment QC (e.g. FastQC, Picard, samtools)</i>*** • <i>Read Alignment (Burrows-Wheeler & K-mer Based)</i>*** • <i>Somatic/Germline Variant Calling and interpretation</i>*** • <i>Variant Annotation and Filtering (e.g. VEP)</i>*** • <i>CNA/SV Detection</i>*** • <i>LOH Detection</i>*** • <i>Illumina-based WES/WGS/RNA-seq workflows</i>*** • <i>UMI-Aware Processing (e.g. fgbio)</i>** 	<ul style="list-style-type: none"> • <i>Checkpoint Inhibitor Biomarker Profiling</i>** • <i>TCR Sequencing and Clonotype Repertoire Diversity</i>** • <i>HLA-Typing (e.g. OptiType)</i>** • <i>Neoantigen prediction (e.g. pVACtools)</i>*** • <i>Immune Cell Deconvolution (e.g. CIBERSORT)</i>** • <i>TIL quantification from RNAseq</i>**
Cancer Genomics & Tumor Biology Bioinformatics	Machine Learning and Modeling in Genomics
<ul style="list-style-type: none"> • <i>Liquid and Solid Tumors</i>*** • <i>Tumor Heterogeneity and Clonal Evolution</i>*** • <i>Pathway Analysis</i>*** • <i>Genomic Visualization and Interpretation</i>*** • <i>Tumor Purity Estimation</i>*** • <i>Data Mining and Large Cohort Processing</i>*** 	<ul style="list-style-type: none"> • <i>Random Forest</i>** • <i>Extreme Gradient Boosting</i>** • <i>Generalized Linear Models</i>** • <i>Cross-Validation</i>** • <i>Model Evaluation (ROC, AUC, Precision-Recall)</i>**
RNAseq Analysis	Experimental Design
<ul style="list-style-type: none"> • <i>Differential Expression</i>*** • <i>GSEA</i>** • <i>Transcript Quantification</i>*** • <i>Alternative Splicing</i>*** • <i>scRNA-seq</i>** 	<ul style="list-style-type: none"> • <i>Cohort Stratification</i>** • <i>Univariate and Multivariate Analysis</i>*** • <i>Longitudinal Study Frameworks</i>** • <i>Prospective/Retrospective Study Design</i>**

Selection of Technical Skills

Advanced ***	Proficient **	Familiar *
<ul style="list-style-type: none"> • <i>R (inc. ggplot2, data.table, S4)</i> • <i>UNIX</i> • <i>GNU Utils (incl. awk, sed, vim)</i> • <i>Docker (incl. Image building)</i> • <i>Git/GitHub</i> • <i>High Performance Computing (e.g. LSF, Slurm)</i> • <i>Amazon Web Services (incl. EC2, S3)</i> • <i>Confluence/JIRA</i> 	<ul style="list-style-type: none"> • <i>Python</i> • <i>Common Workflow Language and Pipeline Implementation</i> • <i>Perl</i> • <i>Jekyll/Static Site Building</i> • <i>HTML/Web Development</i> • <i>Markdown</i> • <i>Cancer Genomics Databases (TCGA, GTEx, cBioPortal, COSMIC, etc.)</i> 	<ul style="list-style-type: none"> • <i>SQL</i> • <i>CSS/SASS</i> • <i>D3.js</i>